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Abstract

Compaction bands are zones of localized grain crushing and porosity reduction, which form spontaneously in high porosity rock under certain

compressive stress conditions. Recent experiments show that compaction bands may nucleate at the edges of notches, holes and cracks subjected

to compressive stress. We present an elasto-plastic model, used to investigate compaction band formation under a variety of boundary conditions.

When simulating a notched specimen and a specimen with a central hole, compaction initiated at the macroscopic void’s tips, and propagated in a

step-wise manner, in agreement with experimental results. This step-wise manner of propagation is different from the compaction band run-away

observed when compaction bands nucleate from pre-existing compaction bands. In addition, heterogeneity in rock properties, such as

heterogeneity in local compressive strength, was found to control the morphology of compaction features initiating from voids.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Compaction bands (CBs) were recently identified in the field

and in laboratory experiments (e.g. Mollema and Antonellini,

1996; Wong et al., 1997, 2001; Rudnicki and Olsson, 1998;

Issen and Rudnicki, 2000, 2001), as discrete localized

deformation zones, occurring in initially high porosity rocks

subjected to high mean and low differential compressive stress.

These naturally occurring compaction zones appear perpen-

dicular to the maximum compressive direction, and are formed

by grain crushing and porosity reduction.

CBs may play an important role in determining fluid flow,

and stress and strain distribution in sedimentary basins. In

addition, their importance in controlling borehole stability was

recently noted (Haimson, 2001, 2003; Klaetsch and Haimson,

2002; Haimson and Kovachich, 2003). Despite their import-

ance, they are a recently discovered feature and their formation

under a variety of boundary conditions is still not well

understood.

We recently proposed a new model to investigate CB

formation and localization (Katsman et al., 2005). By modeling
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an elasto-plastic media where localized compression-induced

volume reduction is allowed to occur, it was found that

locations of compressive stress concentration may act as

nucleation sites for compaction bands. The model thus explains

how a stiff sample boundary causes CBs to originate at its

corners, as in the experiments of Rudnicki and Olsson (1998),

Issen and Rudnicki (2000, 2001), Klein et al. (2001), Wong

et al. (1997, 2001), and Baud et al. (2004). Then, the CB tip

itself operates as a stress concentrator, inducing band growth

perpendicular to the maximum compressive stress, and

nucleation of other bands downstream, resulting in a CB

front propagation.

Moreover, recent field observations and experiments show

that CBs may nucleate not only at the edges of the previously-

created CBs, but also at the edges of notches, holes, cracks, and

other geological structures. Mollema and Antonellini (1996)

observed thick CBs specifically in the compressional quadrant

near the tip of a shear band. Haimson et al. (citation of

‘Haimson et al.’ refers to Haimson (2001, 2003), Klaetsch and

Haimson (2002), Haimson and Kovachich (2003), and

Haimson and Lee (2004)) experimentally observed long and

narrow, stress-induced breakouts in the vicinity of boreholes in

high-porosity sandstones. Vajdova et al. (2003) and Vajdova

and Wong (2003) experimented with aspects of CB nucleation

and propagation at the edges of notches cut into a high-porosity

sandstone. These field and laboratory observations suggest that

in high-porosity rock, the enhanced compressive stress
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expected at a breakout or a shear band tip may result in

localized grain de-bonding, grain crushing, and formation of a

CB. Moreover, both macro- and micro-scale heterogeneities

and defects in the real rocks, even sometimes small voids, may

initiate CBs, probably due to the stress concentration induced

by these defects (Sternlof and Pollard, 2002; Vajdova et al.,

2003; Vajdova and Wong, 2003; Tembe et al., in press;

Haimson et al.).

To understand the physical mechanism of CB nucleation

and propagation in the vicinity of various defects, i.e.

preexisting compacted regions and macroscopic voids, the

dependence on elastic properties, and the role of disorder in

the development of compaction features, we conducted the

theoretical investigation presented here. Results indicate that

disturbances and defects in elastic matter (preexisting CBs,

holes, heterogeneous material properties, and boundary

incompatibility) all act as local stress concentrators. In this

way, features of one kind, such as open holes, may cause

nucleation and propagation of stress-induced features of a

completely different nature, in this case CBs. However, since

CB propagation depends on the specific features of the stress

field, different defects may cause a different propagation

pattern.

2. The physical basis for the model

The compaction process usually occurs in rocks with high

initial porosity finitO20% (Olsson, 2001). After compaction,

the porosity within the band is measured to be reduced to
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Fig. 1. (a) Compaction band, characterized by vertical dimension shortening (2H: be
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rectangular region of size 2H!2c is removed from an elastic body. Then an unconst

reduction), took place (CB formation). Its length 2c remained unchanged. Vertical su

the region was glued back into the hole in the matrix. This procedure creates a sta
values of fcompZ10–20% (Mollema and Antonellini, 1996;

Issen and Rudnicki, 2000; Olsson, 2001). The compaction

process in high-porosity sedimentary rock can be mechanically

described as follows: when a compactive yield stress is

exceeded, the sutures and cement between grains break down;

the mobility of de-bonded grains in a fabric containing

significant porosity allows them to re-pack (Klaetsch and

Haimson, 2002), with possible (Mollema and Antonellini,

1996; Vajdova et al., 2003; Vajdova and Wong, 2003; Haimson

et al.) intra-granular microcracking (Fig. 1a).

The volume loss associated with observed porosity

reduction may be calculated as follows: consider in 3D a unit

of rock of length 2c, height 2H, and thickness L (perpendicular

to the X–Y plane), undergoing compaction, as in Fig. 1a. Before

compaction, the unit of porous rock has volume:

Vinit ZVs CVp Z 2c,2H,L (1)

The total initial volume of the unit, Vinit, is composed of the

volume that the solid grains occupy within the rock matrix,

VsZ ð1KfinitÞVinit, and the volume that the pores occupy

VpZfinit,Vinit. During compaction, the porosity is reduced

from its pre-compacted value, finit, to a post-compacted one,

fcomp. Since no solid is removed from the unit, Vs remains

constant, but the pore volume is reduced to a new value,

Vnew
p Zfcomp,Vcomp. Where Vcomp is the new total volume of

the unit:

Vcomp Z
1Kfinit

1Kfcomp

Vinit (2)
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Since compaction is in the vertical (Y) direction, and LZ
const and 2cZconst before and after compaction, the fraction

of the lost volume 1K(Vcomp/Vinit) is equivalent to (HKh)/H

(Fig. 1a), where 2h is the height of the CB after compaction. As

a result, using Eq. (2), the fraction of height removed from the

initial height 2H is:

ðHKhÞ=ðHÞZ
finitKfcomp

1Kfcomp

(3)

Taking characteristic values for porosity within a CB prior

and after compaction finitZ0.25 and fcompZ0.13, and

plugging into Eq. (3), one obtains (HKh)/HZ0.14, i.e. 14%

of the initial height was lost during a CB creation.

The compaction process is actually a transformation that

causes localized irreversible vertical shortening (Fig. 1b).

Eshelby, in his classical paper from 1957 (Eshelby, 1957),

formulated an analytical method to calculate internal stresses

that arise from localized irreversible volume changes within

elastic media. Specifically for the CB geometry, a rectangular

region of size 2H!2c is removed from an elastic body (Fig. 1b).

Then an unconstrained transformation, decreasing the height 2H

by a value 2(HKh) (CB formation), takes place. Its length 2c

and thickness L (perpendicular to the X–Y plane) remain

unchanged. Surface traction must be applied in order to restore

the region to its original dimensions. After this ‘stretching’, the

region is glued back into the hole in the matrix. This procedure

of CB origination (which follows Eshelby’s formulation)

creates a state of internal stress, which persists even in the

absence of external load. Under load, the internal stress

continues to affect the surrounding stress field. The connection

between Eshelby’s problem and CBs, stylolites and even deep

earthquakes, is further detailed in Katsman et al. (in press).
3. Model

The basic model used is a version of a spring network model

(SNM), which was adapted by us to model compaction. SNMs

were initially used to investigate crack nucleation, propagation,

and growth of crack networks. SNMs are especially suitable for

modeling highly heterogeneous matter, defects, and sharp

discontinuities in material properties (Curtin and Scher,

1990a,b). A detailed description of the model and the algorithm

used is given in Katsman et al. (in press). Briefly, a two-

dimensional elastic material is represented as a lattice of nodes

connected in a regular hexagonal (triangular) array. A central

force spring model is used, where the springs can transfer only

normal forces (neither shear force nor moment is incorporated).

To avoid lattice artifacts that emerge when using single springs

as the basic unit, we use instead the symmetric triangular unit

of three springs as the basic unit for the calculations (see

Appendix A for details).

The nodes are linked by elastic Hookian springs, charac-

terized by Young’s modulus (E), cross-sectional area (A),

equilibrium length in a relaxed position (leq) (these variables

are put into dimensionless form and set equal to unity), and

prescribed stress thresholds in extension and compression (se,
sc). Since spring length is dimensionless, it may represent any

length. Here each spring is chosen to represent a collection of

about 5–10 grains, an average thickness of a CB (Klaetsch and

Haimson, 2002; Haimson and Kovachich, 2003).

The force acting on a spring connecting nodes i–j is

proportional to the springs expansion or contraction. This force

is linearly related to the departure of the length, l, from its

equilibrium value, leq:

Fij ZFji ZaijðlKleqÞij;aij Z
EijAij

l
eq
ij

(4)

Positive (negative) force corresponds to an expanded

(contracted) spring. Stress and force on the springs are

equivalent here, since A is taken as 1 in Eq. (4).

A new addition to the SNM model (Katsman et al., 2005)

allows modeling compaction as a process of local volume

reduction: triangular elements that experience a vertical

compressive stress larger than a prescribed threshold in

compression, sc, undergo compaction, modeled by reduction

of the equilibrium length of the two non-horizontal springs of

the unit. The amount of vertical shortening that the unit

experiences, 2(HKh), reflects its porosity loss during

compaction (Fig. 1; Eq. (3)). Thus, each compacted unit

basically undergoes an Eshelby-type volume reducing trans-

formation (Eshelby, 1957), as detailed in Katsman et al. (in

press), and in the previous section. Young’s modulus of those

springs can also be changed if we choose to do so, to simulate

compaction hardening or softening. Moreover, after changing

the equilibrium length of the non-horizontal springs of the

lattice, the elastic modulus of the horizontal spring of the

altered unit is iteratively tuned so that its length remains equal

to its value before the changes. This procedure ensures that

negligible shear motion (in the X direction) accompanies the

vertical compaction transformation (see Mollema and Anto-

nellini (1996) and Olsson (2001) for CBs characteristics).

As in other SNM models of cracking (e.g. Curtin and Scher,

1990a,b; Schlangen and Garboczi, 1996, 1997), triangular

elements that experience a vertical extensive stress larger than

a prescribed threshold in extension, se, break. Breakage is

modeled by changing to zero the elastic modulus of the springs.

To treat both compaction and breaking processes, a force-

couple is applied to the end-points of each altered spring, as

explained in Katsman et al. (2005). Verification of the model

was conducted as detailed in the Appendix of Katsman et al. (in

press).

Disorder and heterogeneity in material properties are

introduced by using a random Gaussian probability distribution

of stress thresholds among the units:

PðsÞZ
2

pDs
eKðsK�sÞ2=Ds2

(5)

where s is the stress threshold for each unit, Ds is the half-

width of the stress threshold distribution, and �s is the centered

value of the distribution.

The degree of disorder in a specific simulation is

characterized by:
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D Z Ds= �sj j (6)
In the simulations reported here, a lattice of 101!50 was

utilized. Samples were initiated with a prescribed defect with a

given length of either 2c for a central hole or c for notches, and

with a height of 1 unit. Notches and holes are defined as regions

having non-horizontal springs with a zero Young’s modulus,

EnewZ0. The initial compaction defect is prescribed by setting

leqZ0.9 and EnewZ1.5 to non-horizontal springs in a few

adjacent units.

In the models presented below, constant strain rate loading

is modeled quasi-statically. Simulations start from a com-

pletely relaxed equilibrium position of the lattice with

prescribed defects when displacements of the external

boundaries equal zero and forces in each spring measured by

Eq. (4) are zero as well. Then the external boundary conditions

are applied to the bottom and top surfaces by prescribing a

desired macroscopic strain in the Y-direction. Constant

horizontal pressure is applied to the lateral boundary nodes.

As a result of this boundary displacement, both elastic and

inelastic (plastic) responses of the matrix might be required to

reach a new equilibrium. After all springs with stress values

exceeding se and sc have been broken and compacted,

respectively, a new equilibrium position is reached. At this

new equilibrium, it is possible that additional springs

experience stress above the thresholds. If so, these springs

are compacted/broken as needed, and the procedure is repeated

until no more springs exceed the thresholds. Keeping

displacements small enough, the new equilibrium position for
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Fig. 2. (top) Initial conditions: planar CB prescribed in the middle of a homogeneou

entire specimen toward the lateral boundaries in a runaway mode, compacting a w
each internal and boundary node is found at each stage of the

calculations.

4. Conditions

The first set of simulations (Fig. 2, top) represents a

homogeneous sample with a previously-created CB in its

midst. The second set of simulations (Fig. 3, top) represents

a homogeneous sample with a thin hollow flaw (crack) in

its midst, a setup similar to that used in the experiments of

Haimson et al. (a thin hollow flaw might also represent an

elliptical borehole with a major axis much longer then the

minor one). The third set of simulations (Fig. 3, bottom),

represents a homogeneous media with thin notches cut into

the lateral boundaries, as in the experiments of Vajdova

et al. (2003) and Vajdova and Wong (2003). In all the

simulations, compressive vertical strain was applied incre-

mentally to the horizontal boundaries to simulate continuous

loading. Constant stress was also applied to the vertical

boundaries. No boundary elastic mismatch was incorporated.

As vertical compression progressed, some of the units in the

lattice underwent compaction. To simulate compaction, the

equilibrium length of springs experiencing sOsc was

changed from the initial value of l
eq
oldZ1 to a new one of

l
eq
newZ0:9, while their Young’s modulus was increased from

EoldZ1 to EnewZ1.5. These values were chosen following

reports on 10–20% porosity reduction (Klein et al., 2001;

Olsson, 2001), and hardening (i.e. Young’s modulus

increase; Issen and Rudnicki, 2000), measured in localized

compaction.
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Fig. 3. Initial conditions: (top) a planar hole of length 2c, cut in the middle of a specimen; (bottom) two notches, each of length c, cut into the lateral boundaries of a

specimen. Compressive strain boundary conditions are applied to the horizontal boundaries. Compressive stress boundary conditions are applied to the vertical

boundaries.
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5. Results

5.1. Compaction bands in a specimen with an initial CB

Fig. 2 presents development of CBs induced by an initial

central CB of length 2c, in a specimen undergoing
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Fig. 4. Progressive development of compaction bands nucleating from a planar fla

develop perpendicular to the maximum compressive direction, and propagate incre
compression. It was found in the simulations that once the

remote strain was increased beyond a critical value (0.0101), a

CB propagates from the initial CB tip across the entire

specimen towards the lateral boundaries, in a run-away mode

(as in Fig. 5, top), compacting a whole row under the same

remote strain.
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starts at strain 10.0!10K3. The curves for 2cZ27 and 2cZ47 (curves with two different lengths) coincide. When nucleating from the tip of a preexisting CB,

compaction initiates at a higher strain of 10.1!10K3, and proceeds through the whole sample at the same strain (runaway). (bottom) Macroscopic compressive

stress, sL, as a function of cumulative length of the formed compaction band originating from a preexisting CB with a length of 27 units, and from the tips of holes

with lengths of 27 and 47. In the specimen with the larger crack length (2cZ47), compaction initiates at a macroscopic stress sL that is much smaller than in the

specimen with the shorter crack (2cZ27); during the runaway phase, the macroscopic stress, sL, subsides gradually, in a manner that is identical for both cracks and

the CB, though for CBs runaway starts with nucleation, rather than later, as for the cracks (after about after 10 units of compaction).
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5.2. Compaction bands in a specimen with an initial central

crack

Fig. 4 presents development of CBs induced at the tip of an

initial horizontal crack of length 2c, in a specimen experiencing

vertical compression. As strain is increased, CBs propagate

incrementally (as in Vajdova et al., 2003; Vajdova and Wong,

2003) from the crack tip towards the lateral boundaries. This

character of propagation is different than that observed above

for a CB induced at the tip of an initial CB and in Katsman et al.

(2005). There, new CBs were generated either by an elastic

mismatch with the boundary, or by previously existing bands,

and once compaction nucleated, CB propagation proceeded

across the entire specimen width in a run-away mode.

In contrast, here (Fig. 4) it is observed that when compaction

initiates at a crack tip, each macroscopic strain increment

induces a finite increment of compaction. Compaction

continues at the tip only after the remote macroscopic strain

is increased again. The first and last increments of compaction

(Fig. 5, top) result in compaction of more units than other

increments.
5.3. Compaction bands in a specimen with initial notches

Figs. 6 and 7 present development of CBs induced by planar

notches, each of length c, cut into the specimens’ lateral

boundaries (Fig. 3, bottom). Fig. 6 shows a simulation using a
completely homogeneous specimen, whereas Fig. 7 shows

results from a simulation with initial disorder D, following

Eqs. (5) and (6).

Fig. 6 shows that at a certain strain, compaction initiates at

the notch tip, followed by incremental CB propagation inward.

The CB propagation scenario is identical to that induced by

the initial central crack discussed above (Fig. 5). Fig. 7 shows

CB development in a notched non-homogeneous specimen.

Here disorder was introduced by using a small variability, DZ
0.075 (Eq. (6)). Simulations show a cluster of CBs (similar to

diffuse CBs observed in Baud et al. (2004)) initiating at the

notch tip in the sample’s horizontal midsection, and

propagating inwards. Outside this mid-section, no significant

damage was observed. This scenario is reminiscent of the one

demonstrated in Katsman et al. (2005) for a specimen with

small disorder, elastic mismatch, and no initial defects. There

a competition between two sources for compaction nucleation,

namely elastic mismatch and disorder, resulted in dense

compaction clusters. This manner of propagation coincides

with that described in Vajdova et al. (2003) and Vajdova and

Wong (2003). In general, the character of compaction

propagation is very sensitive to the degree of sample

heterogeneity. In simulations using larger disorder (not

shown), DO0.1, CBs are arrested after propagating a very

small distance away from the notches. Instead, diffuse

compaction, distributed within the entire specimen volume,

is nucleated, growing with increased macroscopic strain.
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increases, compaction bands propagate horizontally in an incremental fashion.

R. Katsman, E. Aharonov / Journal of Structural Geology 28 (2006) 508–518514
6. Discussion

The stress field within an elastic matter is a combination of

the stress induced by defects (such as voids and CBs) and the
Fig. 7. Development of compaction bands induced by planar notches cut into the late

a cluster of compaction bands initiate at the notches tips, propagating incrementall
imposed boundary stress. As a formed CB lengthens, the stress

field evolves, in some cases causing variations in CB

propagation rates (Fig. 5). In particular, it is possible to

understand why CB propagation is incremental when initiated
ral boundaries of a non-homogeneous specimen (DZ0.075). As strain increases,

y inwards.
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at a crack tip, versus runaway propagation when initiated at the

tips of compressive defects, as explained below.
6.1. CB nucleation at the tip of defects

In order to compare CB nucleation at the tip of preexisting

CBs and cracks, we need to understand the stress distribution

around these two defects. Although the stress distribution

around cracks is well understood and formulated analytically

(e.g. Lawn and Wilshaw, 1975), only simulation results of the

stress surrounding compaction bands are currently available.

Results of Katsman et al. (in press) show that stress around

CBs is not similar to that around cracks, in either extension or

compression (i.e. CBs are not similar to the anticracks

described by Fletcher and Pollard (1981)). Instead, the vertical

stress at the tip of a preexisting CB, st (measured at the first

unit adjacent to the CB), depends only very weakly on the CB

length, 2c. As shown by Katsman et al. (in press), st is linearly

related to the vertical volume reduction 2(HKh) (Fig. 1a and

b), which occurred in the CB during compaction. In addition, it

was shown that st exceeds, by an almost constant value, the

applied differential stress, sL (Fig. 8). As a result, an

empirically derived form of the stress at the tip of a compaction

band can be formulated as:

st Z ð1CdðsL;W ; cÞÞðsL CaEeÞ (7)

where E is the Young’s modulus of the undamaged material, e

is the plastic strain due to the compaction eZ ðHKhÞ=H, 2H is

the pre-compacted height in the relaxed state (Fig. 1a and b), 2h

is the post-compacted height in the relaxed state (Fig. 1a and

b), related to the decrease in equilibrium length DlZ l
eq
oldKl

eq
new

via
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eq
oldK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl

eq
oldKDlÞ2K

ðl
eq
oldÞ

2

4

r
(7a)

a is a proportionality coefficient (may also be derived from

Eshelby (1957)), observed in the simulation of Katsman et al.

(in press) to be approximately equal to 0.2, d is a coefficient

much smaller than 1, as demonstrated in Fig. 8, and W is the

width of the sample.

The stress in the vicinity of a CB adjacent to a compressed

void is quite different than in the absence of a void. The stress is

a combination of (1) the large reversible compressive stress

induced in the hole tip under compression—identical but

opposite in sign to the stress induced at the hole tip under

extension (Lawn and Wilshaw, 1975; Katsman et al., in press),

(2) the generally smaller irreversible compression induced by

the CB itself.

The normal stress of a crack of length 2c at a horizontal

distance r away from a tip is well known:

sðrÞZMsL

ffiffiffiffiffi
c

2r

r
(8)

where M is a modification factor accounting for finite width of

the elastic media (e.g. Lawn and Wilshaw, 1975). The

parameter regime for which compression induced by a CB at

its tip is smaller than that induced by a compressed crack at its

tip may be found from Eqs. (7) and (8), using rZ1 in Eq. (8),

characterizing the distance between the middle of the last unit

of the crack and the middle of the first undamaged unit adjacent

to it. Thus CB tip stress is smaller than crack tip stress in cases

when

aEe!sL M

ffiffiffi
c

2

r
K1

� �
(9)
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between the two stresses stKsL, as a function of the CB length. st is observed to

. (7)), which is seen to be much smaller than 1 and hence negligible.
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(where d in Eq. (7) was neglected). Under such conditions,

which take place in our simulations, CBs initiate at the tips of

cracks at a lower applied strain than those initiated at the tips of

preexisting CBs. To demonstrate this we compare CBs

nucleating at a tip of a preexisting crack of length 2cZ27,

with CBs nucleating at the tip of a preexisting CB with the

same initial length 2cZ27, using DlZ0.1 and

KEZEnew=EoldZ1:5. It is found that for the same remote

strain, the stress at the compaction band tip is much smaller

than that at the crack tip. As a result, a CB at the tip of a crack

(Fig. 4) initiates and starts propagating at much smaller remote

strain (0.0086, Fig. 5, top) than the CB originating from a

preexisting CB (strain 0.0101, Fig. 5, top).

From Eq. (8) it is also predicted that near cracks (but not

near CBs) CB nucleation is dependent on crack length. This is

because, to initiate compaction, the macroscopic strain and the

resulting sL should be lifted to the value needed to cause

compaction of the first unit adjacent to the hole only. At this

point, the prescribed critical stress scr at the first unit close to

the crack tip is (rZ1, Eq. (8)):

scr ZMsL

ffiffiffi
c

2

r
(10)

As a result, at constant scr, the external load sL needed to

nucleate compaction is inversely proportional to the square

root of the crack length, i.e. compaction will initiate at lower

remote macroscopic stresses for longer cracks:

sL Z
1

M
scr

ffiffiffi
2

c

r
(11)

To test the predictions of Eqs. (10) and (11), we compared

CB initiation and propagation from the tips of two preexisting

cracks with different lengths. As in all our simulations, the

applied boundary conditions (in the Y direction) are constant

strain-rate. At each step, the differential stress sL is calculated.

Fig. 5 (bottom) shows that under the same remote macroscopic

strain, specimens with larger initial crack length (2cZ47), have

smaller correspondent sL than specimens with shorter initial

crack length (2cZ27), as expected, because as cracks lengthen

the matrix effectively softens. On the other hand, as Eq. (11)

predicts, compaction initiates at lower sL for the longer crack,

as shown in Fig. 5 (bottom). These two opposing effects

ultimately led to compaction initiation at the same macroscopic

strain (0.0086, Fig. 5, top) for both 2cZ27 and 2cZ47.
6.2. CB propagation after nucleation

In the case of a CB originating from a preexisting CB, stress

is governed by Eq. (7). Because st is independent of CB length,

once compaction nucleates (stZscr), the band ‘zips’ through

the entire sample, at the same strain. However, in an infinitely

wide specimen held at constant strain boundary conditions,

compaction must stop due to the sL decrease as compaction

progresses (Fig. 5, bottom), leading to a decrease in st (Eq. (7)).

When compaction is initiated at a crack tip, stress is first

dominated by the presence of the void. The first compaction
increment adjacent to the crack under compression is induced

by the compressive stress scr according to Eq. (10). After

compaction of several units (Fig. 5), it is observed that

compaction ceases to propagate. The arrest of compaction is

mainly because stress decreases away from a crack tip as 1=
ffiffi
r

p
,

causing st to drop below scr. However, when increasing the

remote strain further, the stress induced by the crack tip is also

increased, raising the stress in the next unit above scr, thus

leading to compaction of several more units, and so on. It is

observed (fig.(5) upper) that this step-wise manner of

propagation is independent of initial crack length. This can be

understood from Eqs. (8) and (11); since the stress at a distance

r away from the tip, at which scr has been reached, is

independent of crack length:

sðrÞZ scr

ffiffiffi
1

r

r
(12)

After the formed CB is long enough, and its tip is far enough

from the crack tip, the crack-tip influence decays and the stress

from the formed CB itself starts dominating, following Eq. (7).

At a certain macroscopic strain, the prescribed stress for

compaction threshold, scr, is reached at the CB tip, i.e. stZscr,

independent of the existing hole, and compaction propagates

via the rest of the specimen, under the same strain, in a brittle

run-away mode (the last 26 units in Fig. 5 (top), crack with 2cZ
27), as seen by Katsman et al. (2005, in press).

During this runaway, although the macroscopic strain is

held constant, the macroscopic differential stress sL subsides

gradually (Fig. 5, bottom). In simulations using wider

specimens, runaway is always seen according to this scenario

(Fig. 5), crossing the entire specimen width, independently of

specimen width and crack length. This runaway mode is

similar to that occurring in the case of a CB propagating from a

preexisting CB.

From our results and the above analysis, we presume that if

small enough strain increments were used, the first increment

of compaction adjacent to the hole will consist only of a single

unit, proceeding in compaction of single units with slowly

increasing strain, till runaway starts. Usage of such small strain

increments leads to large cumulative numerical errors and time

consumption, thus disabling such detailed calculations.
6.3. Comparison with experiments and field observations

Compaction propagation patterns simulated in this study

under different conditions coincide with experimentally

obtained patterns and field observations. In the experiments

of Haimson et al., CBs propagate at a hole’s tip in the direction

perpendicular to the maximum compressive direction, as they

did in our simulations. However, the Haimson et al.

experiments had an added complexity: the de-bonded and

compacted grains were removed by circulated fluids. As strain

increased, the length of their emptied CB increased as well.

According to our results, if material is not removed (the limit of

low flow rate of the circulating fluid in Haimson et al.), the CB

propagates incrementally, resulting in runaway propagation
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only once CB length is large enough. If CB material is removed

(high flow rate in the experiments), the stress at the empty

CB tip will increase similarly to that of a lengthening crack,

leading to accelerated propagation already from the

compaction onset. Both trends coincide with the results of

Haimson and Kovacich (2003). In practice, in high-porosity

rock, the breakouts (emptied CBs) are seen (Haimson et al.) to

propagate to very large distances without restrictions (contrary

to breakouts in low-porosity rock, caused by a different

mechanism), creating a highly non-homogeneous stress field

due to a combination of emptied and compacted regions.

In contrast, in experiments of notched samples where the

compacted matter was not removed, Vajdova et al. (2003) and

Vajdova and Wong (2003) reported transverse CB propagation

velocity only twice as fast as the axial displacement rate. This

rate is also much slower than CB propagation induced by a stiff

boundary (Olsson, 2001), where axial loading was termed

quasistatic due to the CB runaway propagation in the transverse

direction, followed by rapid compaction front propagation in

the axial direction (front propagated at 8.3 times the axial

displacement rate). The CB propagation rates from Vajdova

et al. (2003), Vajdova and Wong (2003), and Olsson (2001)

qualitatively coincide with our modeling, of a slower rate near

a constant size notch versus a runaway mode induced by CB

tips and other filled compressive defects.

Moreover, the morphology of the CBs observed in the field

(Mollema and Antonellini, 1996; Sternlof et al., 2004),

demonstrated incremental propagation of thick CBs, similar

to the incremental propagation of the thick or diffuse CBs

observed in notched samples, as demonstrated in Fig. 7.

Specifically, under field conditions, the CBs nucleation may be

induced by an initial crack or hole, whereas its large thickness

is caused by the rock heterogeneity.

Finally, in Tembe et al. (in press), compaction in notched

samples experimentally produced CBs at much lower

differential stress than in unnotched samples, as predicted by

our results when inequality (9) holds. Using numerical

characteristics of porous rocks EZ20 GPa, eZ0.1, aZ0.2

(following our simulations results), it is found that the stress

elevation above the applied stress, observed at a CB tip (aEe) is

expected to be of the order of 400 MPa (Eq. (9)). When the

applied differential stress is taken as sLw200 MPa (Klein

et al., 2001; Tembe et al., in press), inequality (9) holds for

voids with non-dimensional length cO18. In dimensional

units, this back of the envelope calculation predicts that CBs

will grow for notches longer than 3.5 mm. This number is

larger than the notch length of 2 mm observed by Tembe et al.

(in press) to induce CBs. The differences may arise due to the

following reasons. In Eq. (9), a leading to the large stress

elevation of 400 MPa might be non-linear. Perhaps more

importantly, the results obtained in two-dimensional calcu-

lations are likely to differ from the three-dimensional

experimental conditions (Thorpe and Jasiuk, 1992). As a

result, we predict that even small voids may induce a stress

concentration at their tip which will initiate CBs. It is even

possible that pores or microcracks in high porosity rocks play a

role of stress concentrators that initiate CBs.
7. Conclusions

Both the modeling results presented here and our previous

work (Katsman et al., 2005), study CB nucleation from defects

in elastic matter. The main result presented here is explanation

of the mechanism by which stress concentrations induced at the

tips of pre-existing CBs and compressed voids may lead to CB

formation. As a result, compaction induced by a pre-existing

CB proceeds in a runaway manner. Compaction induced by a

hole proceeds in a different, step-wise, manner. Compaction is

expected to initiate (under most conditions) at lower remote

strain when formed at the tip of a hole, rather than at the tip of a

compaction defect, due to the generally larger stress

concentrations existing near voids.

Compaction propagation is also sensitive to whether CBs

remain filled, or are continuously emptied by fluids, since

emptied CBs act as holes. Besides being a basic scientific

question, and possibly controlling some aspects of basin

compaction, CBs are an important issue in managing bore-

holes, where the formation of very long CBs may lead to

considerable sand production and affect borehole stability in

oil-producing fields.
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Appendix A

SNMs exhibit a small odd–even asymmetry in the stress

intensity, which is purely a consequence of the use of the

hexagonal (triangular) network. The asymmetry occurs

because the single non-horizontal springs belonging to either

crack or CB tips interact with each other and the free surfaces

differently in cases when the defects contain even or odd

number of the springs (see Curtin and Scher (1990a,b) for the

details). One way to eliminate this artifact is to consider the

symmetric unit of a triangle of three springs rather than a single

spring, as the basic unit. In practice this means that all

quantities such as stress and strain are calculated independently

for each spring, and then averaged over a triangular unit. In this

case, the proper stress intensity scaling is preserved, and the

stress concentrations are always maximal in the defect plane.
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